Home Banner

Our lab is focused on designing and creating efficient hardware systems to meet the growing computational needs of Machine Learning and Artificial Intelligence. We pursue a Physics-to-Systems approach where we combine algorithmic understanding with tailored hardware and architectures. We try to map unique features of emerging materials to the needs of algorithms and applications to build natural and energy-efficient computing systems. Our research interests lie at the intersection of physics, computer science and electrical engineering. 

We believe that such an interdisciplinary approach connecting architectures and algorithms to materials and devices is essential in the new era of electronics driven by domain-specific hardware. 

This is in contrast to Moore’s Law-driven era that has centered around a single device, the field-effect transistor. The new era of electronics calls for a new kind of scientist who needs to be deep in one field but also broad enough to be able to make connections to related disciplines across the computing stack. 


 Join OPUS Lab!

We are recruiting!

 Research Areas

We extend algorithms and architectures that match features of emerging hardware to cater to the needs of computation.
Designing efficient circuits with new functionalities often involves mapping materials directly to applications.
We seek to translate emerging materials and phenomena into physics-based circuit models to design benchmark circuits.

 Recent News

August 20, 2020

Kerem gives a virtual invited talk at the 31st Magnetic Recording Conference August 17-20, 2020 on "Probabilistic Computing using Stochastic Magnetic Tunnel Junctions". 

August 20, 2020

UCSB Computer Engineering spotlights Kerem Camsari's OPUS Lab.